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Note 

Numerical Modeling of Laser Produced Plasmas: 
a Second-Order Integration Scheme 

I. INTRODUCTION 

The possibility of using high-power lasers to initiate fusion reactions had led to 
much activity in the numerical modeling of the dynamics of dense, high-temperature 
laser produced plasmas. One problem encountered in such models is that for certain 
combinations of density and temperature, the time scale for the transfer of energy 
from the electrons to the ions is much shorter than the time scale for the transport 
of energy by electron thermal conductivity. This would normally preclude the use 
of explicit integration schemes because of the large amount of computation time 
required by an appropriately short time step. In this paper we demonstrate an 
explicit method which avoids this problem. 

The hydrodynamic equations for a quasineutral plasma include a continuity 
equation, a momentum equation and separate energy equations for the ions and 
electrons which can be transformed into a composite energy equation for the mean 
plasma temperature and a relaxation-type equation for the temperature difference 
(electron minus ion temperature) [l]. Since the energy-relaxation scale appears 
only in the last equation, the exact form of the other three equations is not of 
interest to us here. The temperature-relaxation equation in normalized form is 

= -g/E+ TV, (1) 

where dTis the temperature difference normalized to a reference temperature T*, 
i;i the velocity normalized to the acoustic speed at T*, fi the gradient operator 
normalized to a scale L*, W a laser heating term, and T, and Ti the normalized 
species temperatures. Our numerical experiments indicate that an appropriate 
value for L* is 1 micron. The time scales t, , the time for a disturbance to cross L*, 
t ,rc , the time for energy equilibration among the electrons in a cell of size L*, and 
fei the time for energy relaxation (i.e., the equilibration of temperature) between 
ions and electrons have all been normalized to the laser rise time t, . 
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We are particularly interested in the case 

where [l, 21 

(2) 

1HC = 3.13 x 10-‘*n~5’2, 

t = 5 31 x 102n-1T3’2 6% * e 5 

T, = T+ AT/2, T = CT, + Ti)/Z AT= T,-T, (3) 

ELECTRON TEMPERATURE (Ok) 

\ 

FIG. 1. Time scales as a function of electron temperature. The different types of integration 
required in each region are indicated. 
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(all units here are c.g.s.). tHc and tei are shown in Fig. 1 as functions of the electron 
temperature (n, the number density of the electrons and ions, has been set equal 
to the nominal density of the dense plasmas, 4 x 10z2 cm-3). In the region to the 
left of A - B, t, and tHC are much larger than At, and tei becomes the most 
important time scale. 

Our new method gives second-order accuracy in region 1 where At > tei 
(effectively dT+ 0), in region 2 where At - t,i as well as in region 3 where 
At < tei (a standard method such as Euler’s would also give second-order accuracy 
here). The advantages of the method are that the three regions just mentioned need 
not be specifically identified-the method gives second-order accuracy in all of 
them-and that the whole region can be treated explicitly with any time step that 
is short enough for the explicit treatment of the electron-heat conduction. Both of 
these advantages result in significant savings of computer time. 

II. THE SECOND-ORDER METHOD 

To illustrate the very simple ideas behind this method, we rewrite Eq. (1) as 

(dY/@ + Yf(Y) = g, (4) 

where, for convenience, dT has been replaced by y and where the other fluid 
variables are held constant over the time step AZ. The tei time scale has been -- 
incorporated into f(y), but the transport term ii * V AT does not appear because 
our model uses the Fluid-in-Cell techniques of Gentry et al. [3]. Note that x and t 
never appear explicitly and that once spatial derivatives are replaced by differences, 
the differential equation becomes ordinary. 

Expanding f(y) and y into Taylor series and retaining only first-order terms, 
we obtain an explicit integration algorithm for Eq. (1) 

m(t + 4 = k + ~o%v(~oN[l - Bll[f(~o) + YO.UY~N + BY, 2 

B(Y,) = em{-Vbd + Y~.~~(Y~N A% (5) 

where y,, = dT(t). The error follows directly from the remainder terms 

E G (4 max If,,(~l Y(Y - yo12 + l.fX~31 (Y - YJ~H~ - BllLf(~~) + Y~~~(Y~>I 
w,<9<w 

(6) 
(see Ref. [4] for an alternative derivation of the error). 
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From Eqs. (1) and (4), we make the identifications 

f(y) = izl + go - Vi,l, 
(7) 

wheref,,f, and f,, will all be O(tG’). Although T, and Fi can be written in terms of 
dT, the fact that the time step is small enough for an explicit representation of 
the heat conduction allows us to treat these two terms as part of g. Equation (7) 
shows that g is O(1) everywhere that I& times the normalized temperature gradient 
is less than one [V < O(1) already]. 

To estimate the magnitude of y0 , we multiply (4) by tei and obtain 

L Wdt + Y!(Y) = Gig, (8) 

wheref = ieif is O(1). Since g is O(l), y cannot exceed the current magnitude of tai 
when it is less than O(1) (by current magnitude, we mean the magnitude of tei for 
the value of T, being considered in Fig. 1). When iai is greater than O(l), f in Eq. (4) 
is small so that in all cases 

y. < miW(L), WI. (9) 

Integration over many time steps will not effect this result because IV--+ 0 rapidly 
for t > 2 and all mechanisms other than laser heating tend to decrease rather than 
increase the temperature difference. 

Since y. G O(l), the denominator in Eq. (6) and the exponential expression in 
Eq. (5) can be replaced by f( yo) and the resulting ratios, fJf and f,,/f, by constants 
of O(1). Using the solution itself to estimate (y - yO), these changes lead to 

E G OWf(yo) - Y~)~(I - evF-dff(yo)l)31. (10) 

The tGi dependence can be exhibited by using Eq. (9) and f(y) m Ct;. where C 
is O(l), 

E < O{&(l - exp[--dtC/i,,])“}. (11) 

To the left of tei in Fig. 1, dt > iei , and Eq. (11) immediately yields E < O(Af2). 
In addition, a simple Taylor expansion shows that 1 - exp(--diC/‘lt,i} < diC/t,( , 
so Eq. (11) reduces to O[(dt/t,J di2]. This is less than 0(412) to the right of 2,; 
where dI < tei . The single algorithm (5) is therefore second-order accurate 
everywhere to the left of A - B, and a fully explicit formulation can be used 
to model the dynamics of laser produced plasmas. 
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